

Improving planning and MBRL with temporally-extended actions

Palash Chatterjee, Roni Khardon

Indiana University, Bloomington

pecey.github.io/MBRL-with-TEA

Motivation

Real world

Continuous time dynamics. Evolves continuously with time.

Approximate model

Discrete time dynamics. Evolves in discrete time steps of δ_t

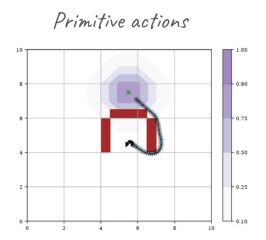
timescale

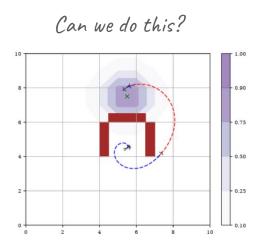
Motivation

Small timescale → Good local approximation.

But agent needs larger number of decisions to solve problems, thus increasing the complexity.

Motivation



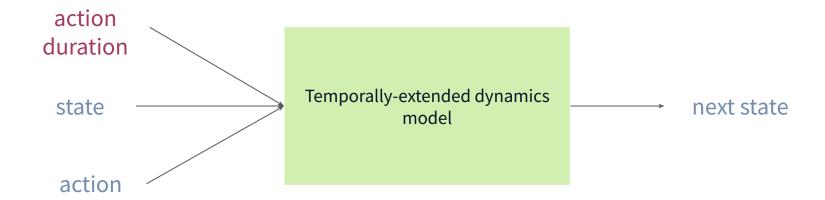


$$|\mathcal{A}| = 2$$

Our Contribution

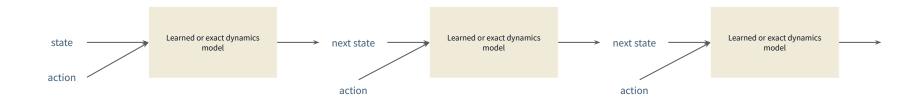
Let the planner optimize for the action as well as the action duration, leading to improved planning and learning performance.

Wishful Thinking



How do we plan if we had access to a temporally-extended dynamics model?

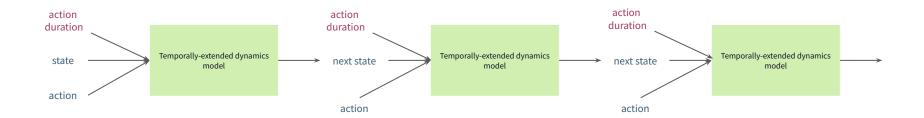
Standard Planning Framework



Need to evaluate at fixed time intervals in order to obtain a trajectory.

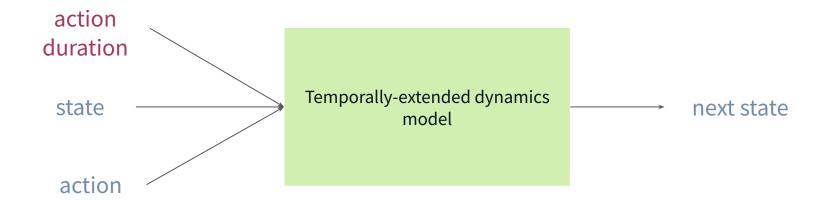
Can lead to very long planning horizons.

Planning with Temporally-Extended Dynamics Function



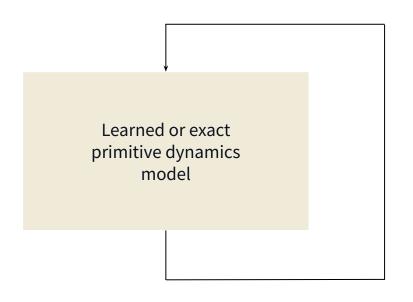
Plan as usual, but with shorter planning horizons.

The Big Question



How do we get a temporally-extended dynamics model?

Key Idea 2



Gets the work done for exact model.

Can lead to compounding error in case of learned models.

Too slow.

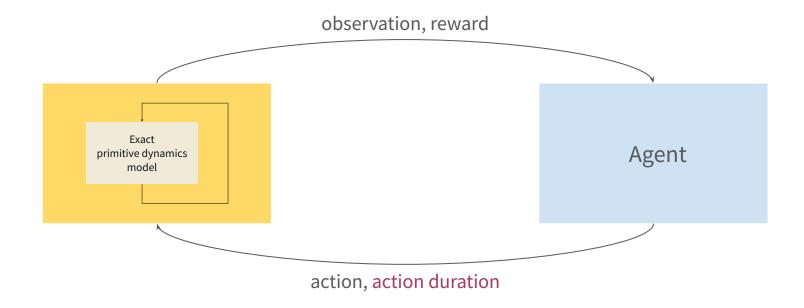
Key Idea 2

Learned temporally-extended dynamics model

Gets the work done.

Constant time evaluation for a temporally-extended action.

Learning in practice



observation and reward are due to an temporally-extended action.

Range for action duration

What range should the planner search over?

Set up as a hyper-parameter.

Dynamic selection.

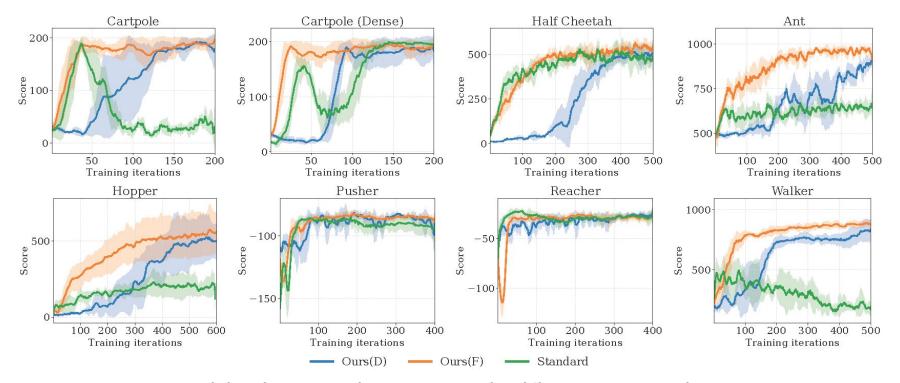
Dynamic selection of range for action duration

Treat as a **non-stationary multi-armed bandit** problem with **exponentially spaced candidates** and a **UCB-heuristic with exponential-moving average** of rewards for arm selection.

Results - Planning

Solves problems with shorter planning horizon and which are not solvable with standard planning.

Results - MBRL with temporally-extended actions



Competitive in all environments, significantly better in some.

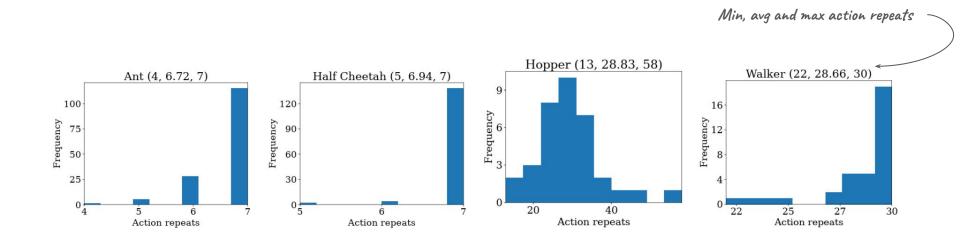
Results - MBRL with temporally-extended actions

Approximate training time in hours

Env	Standard	Ours (F)	Ours (D)
Cartpole	0.65	0.4	0.5
Half Cheetah	45	5	5.5
Ant	41	4	7
Hopper	40	4	6.5
Reacher	2.6	$\bf 1.6$	1.5
Pusher	2.6	2	1.5
Walker	36.8	3.1	5.8

Significant speedup in most environments.

Results - Comparison to action repeats



Distribution of discretized action duration is concentrated in some environments, while being dispersed in others.

Conclusion

TE actions → action duration as pseudo action variable.

Planning → TE actions + iterate over exact dynamics model.

MBRL → TE actions + learned TE dynamics + non-stationary MAB.

Please see the paper for more details and results.

Thank you.

