
ar
X

iv
:2

50
5.

15
75

4v
1

 [
cs

.L
G

]
 2

1
M

ay
 2

02
5

Improving planning and MBRL with temporally-extended
actions

Palash Chatterjee
Indiana University
palchatt@iu.edu

Roni Khardon
Indiana University
rkhardon@iu.edu

Abstract

Continuous time systems are often modeled using discrete time dynamics but this requires a
small simulation step to maintain accuracy. In turn, this requires a large planning horizon which
leads to computationally demanding planning problems and reduced performance. Previous work
in model free reinforcement learning has partially addressed this issue using action repeats where
a policy is learned to determine a discrete action duration. Instead we propose to control the
continuous decision timescale directly by using temporally-extended actions and letting the planner
treat the duration of the action as an additional optimization variable along with the standard
action variables. This additional structure has multiple advantages. It speeds up simulation time
of trajectories and, importantly, it allows for deep horizon search in terms of primitive actions
while using a shallow search depth in the planner. In addition, in the model based reinforcement
learning (MBRL) setting, it reduces compounding errors from model learning and improves training
time for models. We show that this idea is effective and that the range for action durations can
be automatically selected using a multi-armed bandit formulation and integrated into the MBRL
framework. An extensive experimental evaluation both in planning and in MBRL, shows that our
approach yields faster planning, better solutions, and that it enables solutions to problems that are
not solved in the standard formulation.

1 Introduction

Many interesting real life systems evolve continuously with time, but the dynamics of such systems are often
modeled using a discrete-time approximation. In these models, time evolves in discrete steps of δt called the
timescale of the system. Simulators used in RL or robotics often use such models to capture physical systems.
Setting δt to a small value allows the discrete-time models to have a good local approximation. To obtain a
trajectory of the system using such models, the dynamics function needs to be evaluated at fixed intervals of
δt. Because δt is small, the number of decisions required to solve even a simple task can be quite large. From
the perspective of planning or MBRL, this translates to longer planning horizons (or rollouts) which can
limit their effectiveness.

Shooting based planners like Cross Entropy Method (CEM) and Model Predictive Path Integral (MPPI)
[Kobilarov, 2012, Botev et al., 2013, Williams et al., 2017, Chua et al., 2018] rely on sampling to estimate
the highly rewarding regions of the state space. They are known to perform poorly as the planning horizon
increases, especially in environments with noisy dynamics or sparse rewards. This is because in such
environments the variance of their estimates increase and they need a large number of samples in order to
act reliably [Chatterjee et al., 2023]. In addition, when planning with learned models as in MBRL, longer
rollouts can lead to compounding errors [Janner et al., 2019].

Simulators like MuJoCo [Todorov et al., 2012] or Arcade Learning Environment [Bellemare et al., 2013] make
use of a fixed frame-skip in addition to timescale. A frame-skip or action repeat of n means that the same
action is repeated for n times before the agent is allowed to act again. So the decision timescale becomes
n × δt. Frame-skip values are normally set heuristically, but as shown by Braylan et al. [2015], the ideal
values of frame-skip vary depending on the environment and can heavily influence the performance of the

1

https://arxiv.org/abs/2505.15754v1

agent. This has led to many efforts in trying to control the decision timescale by learning a policy to control
either frame-skip [Durugkar et al., 2016, Lakshminarayanan et al., 2017, Sharma et al., 2017], or timescale
[Ni and Jang, 2022]. To the best of our knowledge, none of the previous approaches modeling the decision
timescale consider the planning problem or the use of planning in MBRL.

In this paper, we propose to control the decision timescale directly by treating the action duration (δt) as an
additional optimization variable. At each decision point, the planner optimizes for the standard primitive
action as well as its duration resulting in a temporally-extended action. In contrast to using a fixed frame-skip,
the duration for each temporally-extended action can be different allowing the planner to choose actions of
varying durations, as can be seen in Figure 4. This provides the planner with an added degree of flexibility
and, at the same time, it reduces the search space by constraining the structure of the trajectories that the
planner searches over. Further, as a small increase in the temporally-extended planning horizon can translate
to a large increase in the primitive planning horizon, this allows the agent to search deeper, enabling it to
solve environments which are otherwise too difficult.

Finally, unlike previous work, we do not learn a policy. Our work is in the context of MBRL. We learn a
model that predicts the next state and reward due to a temporally-extended action and use the learned
model to plan, leading to superior performance as well as faster training. Selecting a suitable range for δt is
an important step as it can directly impact the performance of the planner. We show that posing this as a
non-stationary multi-armed bandit (MAB) [Besbes et al., 2014, Lattimore and Szepesvári, 2020] problem
allows us to select the range automatically.

To summarize, our main contributions are as follows:

1. We propose to control the decision timescale directly by letting the planner optimize for primitive action
variables as well as the duration of the action, and evaluate this idea both in planning and in MBRL.

2. We show that our approach decreases the search space and the planning horizon for the planner, helping it
solve previously unsolvable problems. It also improves the stability of the search by allowing the planner
to search deeper and solve problems with sparse rewards.

3. We show that learning temporally-extended dynamics models and selecting a suitable range for δt can be
integrated into a single algorithm within the MBRL framework, and that planning using these learned
models leads to faster training and superior performance over the standard algorithm.

2 Related Work

Macro-actions [Finkelstein and Markovitch, 1998, Hauskrecht et al., 2013] and options [Sutton et al., 1999]
are two of the most common methods to introduce temporal abstraction in planning and RL. A macro-action
is a usually defined to be sequence of primitive actions that the agent will take. On the other hand, an
option consists of a policy, an initiation set and a terminating condition. The initiation set determines when
the option can be taken, while its duration depends on when its terminating condition is satisfied. Both
macro-actions and options can either be predefined or can be learned from data [Durugkar et al., 2016,
Machado et al., 2017a,b, Ramesh et al., 2019].

Frame-skips or action-repeats are simpler forms of macro-actions where each macro-action is essentially a
single primitive action repeated multiple times. While frame-skipping has been used as a heuristic in many
deep RL solutions [Bellemare et al., 2012, Mnih et al., 2015], Braylan et al. [2015] showed that using a static
value of frame-skips across environments can lead to sub-optimal performance. Following this, there have
been multiple efforts using the model-free RL framework to make the frame-skip dynamic. Lakshminarayanan
et al. [2017] propose to learn a joint policy on an inflated action space of size n|A| where each primitive action
is tied to n corresponding action-repeats. The value of n is usually small to limit the size of the inflated
action space. A more practical approach is to learn a separate network alongside the standard policy to
predict the number of action repeats [Sharma et al., 2017, Biedenkapp et al., 2021].

2

Frame-skips or action-repeats are discrete values and, while they introduce a temporal abstraction for discrete
time systems, a continuous representation is both more realistic and more flexible. Some prior work in
model-free RL has explored this problem. Ni and Jang [2022] use a modified Soft Actor Critic [Haarnoja
et al., 2018] to learn a policy and control the timescale rather than the action duration, with an explicit
constraint on the average timescale of the policy. Their formulation of the optimization objective is similar
to ours except that they use a linear approximation of the reward function to compute the reward due to
a macro-action (details in Appendix B). Wang and Beltrame [2024] introduce Soft-Elastic Actor Critic to
output the duration of the action along with the action itself. However, they modify the reward structure by
introducing penalties for the energy and the time taken by each action. Our work is in the planning and
MBRL setting. Rather than learn a policy, we use either exact or learned transition and reward functions to
plan. Our objective arises naturally from the formulation without the need to add additional constraints
or engineer rewards. Further, in previous work in model-free RL, the maximum value of action-repeats or
timescale is set as a hyperparameter. Instead, we use a MAB framework, similar to Li et al. [2018] and
Lu et al. [2022], and automatically select the maximum action duration removing the need for tuning an
additional hyperparameter.

Finally, in our work, action durations are chosen by the planner, which is different than planning with durative
actions [Mausam and Weld, 2008] where the durations are given by the environment.

3 Modeling Temporally-Extended Actions

The standard discrete-time Markov Decision Process (MDP) is specified by {S,A, T ,R, γ} where S and A
are the state and action spaces respectively and γ ∈ (0, 1) is the discount factor. st ∈ S and at ∈ A represents
the state and primitive action at timestep t. The one-step transition distribution is given by T (st+1|st, at)
and the one-step reward distribution is given by R(st, at). The expected discounted return is given by

Jt = E
[∑D−1

i=0 γiR(st+i, at+i)

]
where D is the planning horizon. Discrete time simulation of continuous

systems assumes that T and R capture the transitions and the corresponding reward due to exactly δenv
t

duration, where δenv
t is the timescale of the MDP. In cases when T and R are unknown to the agent, their

empirical estimates, T̂ and R̂, can be learned using data collected by interacting with the MDP. For the
following discussion, we overload the term dynamics to mean both the transition and reward function.

Although we eventually care about what primitive actions to take in the environment, a planner can work at
an abstract level by using temporally-extended actions. We use the terms decision steps and execution steps
to distinguish between the number of times the agent outputs an action and the number of primitive actions
that are actually executed in the environment.

Let us assume that the agent has access to the primitive dynamics function (f) which is accurate for all
0 ≤ t ≤ δenv

t . In the standard setup, the agent uses f at each decision time and outputs an action whose
duration is implicitly δenv

t . The return due to a trajectory τ is given by J1 =
∑L(τ)

t=1 γt−1R(st, at) where L(τ)
is the number of decision points in τ . Here, the number of execution steps is exactly equal to the number of
decision steps.

In our proposed framework, the planner explicitly outputs the duration of the action along with the action itself.
At decision step k, let the planner output an action ak and its corresponding duration δtk ∈ [δtmin, δtmax].
Now the number of execution steps need not necessarily be equal to the number of decision steps. Let
ek = ⌊δtk/δenv

t ⌋+ 1(δtk mod δenv
t) be the number of execution steps associated with decision step k. Further,

let e<k =
∑k−1

j=1 ej be the total number of execution steps taken prior to decision step k. The return due to a
trajectory τ will be

J2 =

L(τ)∑
k=1

γe<k

ek∑
t=1

γt−1R(s(e<k+t), a(e<k+t)) (1)

3

Algorithm 1 One decision step : Action selection using a temporally-extended dynamics function (F) with
a shooting-based planner

Require: temporally-extended dynamics function (F), current state (sk)
initial action distribution (µa, vara), number of rollouts (N), planning horizon (DTE)

1: for i = 1 to optimization steps do
2: Sample N action sequences of length DTE using µa, vara
3: for all N action sequences (at, . . . , at+DTE) do
4: // at includes standard action variables along with their duration
5: for step t = 0 to DTE − 1 do
6: Simulate transition using F and at and compute aggregate reward
7: end for
8: end for
9: Update µa, vara using action sequence and aggregate reward

10: end for
11: return sample ak using µa, vara

where e<1 = 0. This formulation avoids the need for a precise continuous time model of discounting. Note
that when δtk = δenv

t for all k, then J2 = J1.

Let RTE
k =

∑ek
t=1 γ

t−1
2 R(s(e<k+t), a(e<k+t)) be the reward due to the temporally-extended action at decision-

step k. Then we have a slightly different view of J2 where the returns due to a temporally-extended action is
discounted based on the number of primitive actions taken prior to the current timestep. Formally,

J3 =

L(τ)∑
k=1

γ
e<k

1 RTE
k =

L(τ)∑
k=1

γ
e<k

1

(ek∑
t=1

γt−1
2 R(s(e<k+t), a(e<k+t))

)
(2)

This view allows us to have different discount factors, γ1 and γ2, giving us more fine-grained control over the
behavior of the agent.

4 Method

We want the planner to have access to a temporally-extended dynamics function (F) that can work with
temporally-extended actions. If F is available, then using it for planning is straightforward. For example,
one can use a shooting-based planner with F to select an action from state sk as shown in Algorithm 1.
However, F is usually not readily available. In the standard planning setup, the agent has access to the
primitive dynamics function (f) which samples from one step primitive transition and reward function. As a
simple solution, we can wrap f in a loop (as shown in Algorithm A1 in the Appendix) to obtain FIP. This
holds as we assumed f is accurate for all 0 ≤ t ≤ δenv

t . We call this the iterative primitive dynamics function.
Although FIP accurately captures F , it fails to facilitate the speed of execution. The time required by FIP to
simulate the outcome due to a temporally-extended action is dependent on the duration of the action itself.
However, if we had access to F , this would have been a constant time evaluation.

To fix this, we use neural networks and approximate F using F̂TE. We can then use F̂TE to predict the
next state and reward due to a temporally-extended action from a given state. For learning F̂TE, we use
the framework of MBRL. We collect data by interacting with the environment and use the data to train a
neural network to predict a distribution over the next states and a point estimate for the reward. Once F̂TE
is learned, it can be used for planning. In this work, we use a shooting-based planner and use Algorithm 1
with F̂TE ≈ F in order to select actions.

Selecting δtmin and δtmax : Unlike other action variables, the range of δt does not come from the environment
and has to be set by the planner. If the range is too large, the search for the optimal δt becomes harder while

4

a smaller range can limit the search. However, as the range simply influences the spread of the distribution
used to sample δt, its value need not be set precisely.

We set δtmin = δenv
t to be the timescale of the environment. For δtmax, we consider exponentially-spaced

candidates, and pose the selection as a MAB problem, where each δtmax candidate is modeled as an arm.
Pulling an arm is equivalent to selecting one of the δtmax candidates and using it to collect data for one
episode. The aggregate reward observed at the end of an episode indicates the quality of the arm. Note that
the rewards obtained are directly related to the quality of the learned dynamics model the agent has. As the
agent collects more data, the model quality and hence the reward distribution of the arms change, making the
problem of arm selection, non-stationary. To address this we propose to use an exponential moving average
that focuses the reward estimate on recent episodes and hence ameliorates the effect of non-stationarity.
Another important question is whether to learn a single dynamics model to be shared by all the arms or learn
a separate dynamics model for each arm (see Appendix H.1 for a larger discussion). We find that learning a
separate dynamics model for each arm and using a UCB heuristic with exponential moving average of the
rewards per timestep works well for our purpose.

Let R̄T be the average reward per timestep obtained in episode T and let R̂i,T = R̂i,T−1 + α(R̄T − R̂i,T−1)
be the exponentially-weighted average of rewards per timestep obtained till episode T due to candidate i. Let
N(i, T) be the number of times candidate i was chosen before iteration T . At the start of iteration T + 1,
δtmax is selected using Equation (3) where we set R̂i,T=0 to the mean reward obtained across 5 episodes using
the randomly initialized dynamics models, prior to any training.

argmax
i

(
R̂i,T + c

√
2 log(T)

N(i, T)

)
(3)

Discussion : Consider two agents - ASTD that uses primitive actions and ATE that uses temporally-
extended actions and let DSTD and DTE be their corresponding planning horizons. Further, for ATE, let
δtmax = m× δenv

t for some positive integer m.

The planning horizon for the two agents are at different scales and not directly comparable. We introduce
the term maximal primitive horizon (H) which is the maximal number of primitive actions taken by the
agents while planning. For ASTD, H = DSTD, while for ATE, H = m ×DTE. A fixed value of H ensures
that, while planning, ATE does not consider more primitive actions than ASTD, at any instant. For practical
purposes, ATE will take less primitive actions than ASTD. We argue that even in this unfair setting, using
temporally-extended actions can be beneficial.

1. Using temporally-extended actions helps to reduce the space of possible trajectories that ATE searches
over. For simplicity, let us consider an environment with binary actions. The search space for ASTD is 2H ,
while for ATE, the search space reduces to 2H/m. However, this reduction comes at a cost of the flexibility
of trajectories as when m is larger the generated trajectories have a more rigid structure.

2. ATE needs to optimize less variables than ASTD. In general, if the action space has dimensions |A|, then
at each decision step, ASTD has to optimize for H|A| action variables, while ATE will have to optimize for
(H/m)(|A|+ 1) action variables.

3. F̂TE evaluates the outcome of temporally-extended actions in constant time, which is similar to that taken
by f to evaluate the outcome of a primitive action. As DTE < DSTD for all practical purposes, using F̂TE
with ATE helps it make a decision faster than ASTD.

4. Manipulating the value of m allows us to scale up the maximal planning horizon of ATE without adding
any extra variables. This can be useful in environments where rewards are uninformative and a deeper
search is required.

5

5 Experiments

We evaluate the use of temporally-extended actions both in planning and in MBRL. We compare the planning
performance of ASTD and ATE using CEM, which is a shooting-based planner, as used previously by Chua
et al. [2018]. CEM maintains a sequence of sampling distributions from which it generates multiple action
sequences. For each action sequence, it instantiates multiple particles and computes the trajectory and reward
due to each particle. Then, it computes the mean reward per action sequence and uses the top k action
sequences to bias its sampling distributions. For evaluation, we wrap the primitive dynamics function of the
simulation environment in an iterative loop as shown in Algorithm A1.

20 40 60 80 100
Planning Horizon (Naive)

−50

0

50

100

150

R
ew

ar
ds

Standard
Ours

2 4 6 8 10
Planning Horizon (Ours)

Figure 1: ASTD requires a large planning horizon
(DSTD ≥ 60) to succeed in Mountain Car, but ATE
using δtmax = 100 can work with a small planning
horizon (DTE ≥ 4).

For experiments with RL, following Chua et al. [2018],
we learn an ensemble of neural networks to approx-
imate the dynamics function. Specifically, ASTD
learns to approximate f while ATE learns to approx-
imate F . Both the agents use the same network
architecture. The only difference is that the model
learned by ATE has an extra input variable corre-
sponding to δt, in addition to the state and action
variables. During each training iteration, we train
on all the data collected so far by randomly drawing
mini-batches from the dataset of past transitions and
corresponding rewards. The model ensembles are
then used with CEM to choose an action. We use
the TS∞ variant [Chua et al., 2018] that generates
trajectories using a single model sampled from the
ensemble for each trajectory.

We consider two variants of our proposed algorithm
depending on whether the range of δt, specified by
δtmin and δtmax, is fixed or selected dynamically at
the start of each episode. ATE(F) uses a fixed value
of δtmax, while ATE(D) uses the proposed MAB framework to dynamically select δtmax at the beginning of
each episode. Both variants use δtmin = δenv

t . The other key difference is that ATE(D) learns a temporally-
extended dynamics model for each δtmax candidate. For our discussion, we use ATE to refer to both the
variants in general while specifying the variant wherever required. Full details of the experimental setup are
given in Appendix D.

First, we experiment in a planning regime where the agent has access to the exact dynamics function. In
this setting, ATE uses iterative primitive dynamics function (Algorithm A1) for planning. For experiments,
we use the Mountain Car environment from Gymnasium [Kwiatkowski et al., 2024], a multi-hill Mountain
Car environment from the Probabilistic and Reinforcement Learning Track of the International Planning
Competition (IPC) 2023 [Taitler et al., 2024], and the Dubins car environment from Chatterjee et al. [2023].
Then, we experiment in the MBRL setting where T and R are not known. In this case, we learn a temporally-
extended model as discussed above, by interacting with the environment. We use Cartpole from Gymnasium
and Ant, Half Cheetah, Hopper, Reacher, Pusher and Walker from MuJoCo [Todorov et al., 2012]. We run
each experiment across 5 different seeds and aggregate the results.

The experiments are organized so as to answer a set of questions as outlined below.

Does planning with temporally-extended actions help? Mountain Car has a sparse reward, requiring
a large planning horizon to succeed. We compare the performance of ASTD and ATE by varying the planning
horizon. As shown in Figure 1, ATE(DTE ≥ 4) solves the environment with a much smaller planning horizon
than ASTD(DSTD ≥ 60).

Next, we experiment with the multi-hill version of Mountain Car from IPC 2023 (illustrated in Figure A1b).

6

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(a) ASTD, |A|=2

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(b) ATE, |A|=2

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(c) ATE, |A|=102

Figure 2: When the number of actions is small (as in a and b), both the agents are able to solve the problem.
But when the number of actions increases (c), ATE is still able to solve the problem while ASTD fails due to
large memory requirements. The shape of the curves is an artifact of the action space in this environment.
Note that a constant action in acceleration space yields curved paths. The path in (c) is composed of 4
actions of different durations, as marked by the colors.

Each instance of the environment increases the difficulty by either adding more hills or altering the surface
of the hills. As shown in Table 1, while ASTD is able to solve only the first instance, ATE solves all the
instances. Note that, even though ATE takes a small number of decision steps, the computation time required
to finish an episode is comparable to ASTD. This is because ATE uses an iterative version of the dynamics
(FIP) for simulation. Another observation is that as the episode terminates when the agent reaches the goal,
the number of decision steps is smaller than DTE.

Instance Rewards ↑ Decision steps ↓ Time for an episode ↓ Success Probability ↑

Standard Ours Standard Ours Standard Ours Standard Ours

1 90.98 ± 0.26 91.74 ± 1.55 108.8 ± 0.84 3.0 ± 1.41 4.86 ± 0.19 5.7 ± 1.13 1.00 1.00
2 -0.1 ± 0.01 88.67 ± 0.65 300.0 ± 0.0 2.8 ± 1.1 7.98 ± 0.28 5.59 ± 0.91 0.00 1.00
3 -0.1 ± 0.01 86.15 ± 1.11 300.0 ± 0.0 2.6 ± 0.89 7.94 ± 0.15 5.44 ± 0.76 0.00 1.00
4 -0.1 ± 0.01 66.50 ± 43.54 300.0 ± 0.0 3.2 ± 1.3 7.73 ± 0.28 6.01 ± 1.05 0.00 0.80
5 -0.1 ± 0.01 83.41 ± 0.54 300.0 ± 0.0 3.0 ± 0.0 8.0 ± 0.28 5.82 ± 0.2 0.00 1.00

Table 1: Results on Multi-hill Mountain Car from IPC 23 across 5 seeds where ATE (DTE = 12) solve all
instances while ASTD (DSTD = 175) can only solve 1/5.

Can temporally-extended actions help transform infeasible problems to feasible ones? We use
the Dubins Car environment (δenv

t = 0.2) and experiment with u-shaped map as shown in Figure 2. This is a
challenging configuration, where shooting-based planners often fail, because the car is initially facing the
obstacles and a naive forward search hits the obstacles and does not yield useful information. In addition, as
the reward is sparse, this map requires the planning horizon to be large. To solve the environment, ASTD
requires 10,000 samples with a planning horizon of 1000, while ATE requires a planning horizon of 75 and
δtmax = 20 (see detailed discussion in Appendix F.2).

To increase difficulty, we augment the action space with 100 dummy action variables. Although these variables
do not contribute to the dynamics or rewards, the agent is unaware of this and has to account for all the action
variables. Even in this setting, ATE succeeds while ASTD fails due to large memory requirements. A simple
computation shows that ASTD needs around 4GB of memory to track the sampled actions, whereas ATE
requires just 103MB. In other configurations that reduce the memory requirements (detailed in Appendix F.2),
the search fails to find the goal. This shows that using temporally-extended actions can often turn infeasible
search problems into feasible ones.

How does varying the two discount factors impact the agent’s behaviour? The experiments so
far use a single value of γ while the proposed formulation in Equation (2) has two discount factors. As we
discuss next, while some expectations on the effect of γ1 and γ2 are intuitive, a complete characterization is
not obvious.

7

γ1 γ2 Decision Steps Primitive Steps

Case 1: Fixed γ1 0.99

1.0 20.2 ± 0.84 121.8 ± 2.95
0.99 20.2 ± 0.45 122.0 ± 2.00
0.9 21.6 ± 1.34 121.8 ± 0.84
0.8 22.2 ± 0.84 122.6 ± 1.52
0.7 23.2 ± 0.45 122.8 ± 1.64

Case 2: Fixed γ2

1.0

1.0

19.0 ± 0.71 128.6 ± 1.52
0.99 20.2 ± 0.84 121.8 ± 2.95
0.95 18.6 ± 0.55 117.6 ± 0.89
0.9 16.4 ± 0.55 115.4 ± 0.55

Table 2: When γ1 is fixed, decreasing γ2 leads to an increase
in number of decision steps. When γ2 is fixed, decreasing γ1
leads to a decrease in the number of primitive steps. Results
averaged across 5 random seeds.

First, we note that even though DTE is fixed,
the primitive planning horizon is dependent
on the duration of the actions chosen by the
planner. This can result in different levels of
discounting in different trajectories. In contrast,
in the standard framework, the discounting
due to a planning horizon DSTD is fixed. This
makes predicting the behavior of ATE, upon
varying γ1 and γ2, difficult. Second, for all
decision steps k > 1, γ1 will always be the
dominating component in the objective. This is
because the exponent term for γ1 is the number
of primitive steps before the decision step k,
while the exponent term for γ2 is proportional
to the duration of the temporally-extended action.

To explore the impact of γ1 and γ2, we fix one and vary the other. We use the cave-mini map (Figure A1a)
in the Dubins Car environment, where the agent has to navigate through multiple obstacles. We have two
hypotheses. First, for a fixed γ1, smaller values of γ2 will prefer shorter action durations and hence larger
number of decision points. Second, for a fixed γ2, decreasing γ1 should prefer longer action durations and a
smaller total number of primitive actions. The intuition is that if we reduce γ1 and the planner does not
reduce the number of primitive actions, then the impact of discounting on the overall objective will be higher.
Table 2 confirms both these trends.

Do the benefits transfer if we learn the dynamics? Having access to the transition and reward
function is not realistic. We would like to be able to learn these as we interact with the environment. For
this experiment, we use Ant, Half Cheetah, Hopper, Reacher, Pusher and Walker from MuJoCo along with
Cartpole. By default, the MuJoCo simulators use a preset value of frame-skip which vary depending on
the environment. This results in the effective timescale being greater than the original timescale. For our
experiments, we modify the environments to use a frame-skip of 1.

ATE uses a learned temporally-extended model for planning, while for evaluation we wrap the primitive
transition and reward functions in an iterative loop similar to FIP. ATE(F) uses a fixed δtmax throughout the
entire learning process while ATE(D) uses the proposed MAB framework to dynamically select the value of
δtmax at the start of every episode.

Each experiment is run for a specific number of iterations, where in each iteration, we train the model using
multiple mini-batches drawn from the dataset of past transitions, and then use the trained model to act in
the environment for one episode. The rewards collected during the episode are used for evaluating the agent’s
performance. We plot the mean and standard deviation of the running average of scores obtained as well as
the number of decisions made by the agents across training iterations. The main results from our experiments
are in Figure 3.

Overall, ATE performs better than ASTD while being faster. ATE(F), with a suitable selection of δtmax,
results in the best performance. ATE(D) requires more training iterations than ATE(F) as it has to spend
time exploring all the candidate arms but the performance catches up. In addition, ATE is significantly faster
than ASTD in terms of computation time (see Table A3 in the Appendix). The speed-up for ATE comes from
three sources. First, using temporally-extended actions leads to fewer decision points. Second, the reduction
in search space, due to temporally-extended actions further reduces planning time. Third, a decrease in
decision points results in a smaller sized dataset of past transitions that the model needs to learn from, thus
reducing the model training time.

In Cartpole, an episode lasts for 200 primitive actions, unless the pole falls which terminates the episode.
By default, the agent gets a reward of 1 at each timestep. We find that this reward formulation leads to
highly unstable learning using the standard framework. The spike in number of decision points for ASTD

8

50 100 150 200
Training iterations

0

100

200

Sc
or

e
Cartpole

50 100 150 200
Training iterations

0

100

200

Sc
or

e

Cartpole (Dense)

100 200 300 400 500
Training iterations

0

250

500

Sc
or

e

Half Cheetah

100 200 300 400 500
Training iterations

500

750

1000

Sc
or

e

Ant

50 100 150 200
Training iterations

20

100

200

D
ec

is
io

n
Po

in
ts

Cartpole

50 100 150 200
Training iterations

20

100

200

D
ec

is
io

n
Po

in
ts

Cartpole (Dense)

100 200 300 400 500
Training iterations

150

500

1000

D
ec

is
io

n
Po

in
ts

Half Cheetah

100 200 300 400 500
Training iterations

150

500

1000

D
ec

is
io

n
Po

in
ts

Ant

100 200 300 400 500 600
Training iterations

0

500

Sc
or

e

Hopper

100 200 300 400
Training iterations

−150

−100

Sc
or

e

Pusher

100 200 300 400
Training iterations

−100

−50

Sc
or

e

Reacher

100 200 300 400 500
Training iterations

500

1000

Sc
or

e

Walker

100 200 300 400 500 600
Training iterations

35

500

1000

D
ec

is
io

n
Po

in
ts

Hopper

100 200 300 400
Training iterations

0

100

D
ec

is
io

n
Po

in
ts

Pusher

100 200 300 400
Training iterations

50

100

150

D
ec

is
io

n
Po

in
ts

Reacher

100 200 300 400 500
Training iterations

35

500

1000

D
ec

is
io

n
Po

in
ts

Walker

Ours(D) Ours(F) Standard

Figure 3: Mean and standard deviation of the running averages (window size=10) of scores and number of
decisions taken by the agents in classical control and MuJoCo domains across 5 different seeds. Ours(D)
selects δtmax automatically using the proposed multi-armed bandit framework while Ours(F) uses fixed δtmax

for every episode. Using temporally-extended actions results in better performance in many environments
while requiring fewer decision points.

(DSTD = 30) is because the agent learns to keep the pole from falling for the entire duration of the episode,
but it soons crashes and the agent is unable to recover. Following Wang et al. [2019], we also experiment with
a more informative reward and find that it stabilizes the learning of the standard framework. Both variants
of ATE(DTE = 5) work well with both the reward functions.

An episode in Ant, Half Cheetah, Hopper and Walker lasts for 1000 primitive actions. By default, the reward
per timestep in these environments is not bounded. As our bandit framework uses a UCB heuristic for
selecting δtmax, we modify the reward per timestep to be between 0 and 1. Details of the reward functions are
in Appendix C. In Half Cheetah, ATE(DTE = 15) performs similarly to ASTD(DSTD = 90) but is 8x faster.
In Ant, Hopper and Walker, ATE significantly outperforms ASTD. ATE(F) results in the best performance
among agents showing the importance of properly selecting δtmax. ATE(D) explores all the possible candidate
arms before fixating on one, as can be seen from the plots of number of decision points. The value of δtmax

9

eventually chosen by ATE(D) is close to ATE(F). Note that ATE(D) does not have the flexibility to choose
a value of δtmax arbitrarily but has to choose from a fixed list of exponentially spaced δtmax candidates.
Figure 4 shows a histogram of discretized action durations as action repeats chosen by ATE(F) in these
environments using the model at the end of training. While in Ant and Half Cheetah, ATE(F) mostly chooses
actions with similar δt, in Hopper and Walker, the values of δt vary significantly during the episode. This
showcases the advantage of flexibly adapting action duration in each step of execution.

In Pusher and Reacher, the performance of ATE is again similar to ASTD. But in this case, the number of
decision points for ATE is also similar to that of ASTD, indicating that ATE identifies that a small decision
timescale works better here. This illustrates that in cases when a long duration is not suitable, ATE’s
performance is still competitive with the standard solution.

4 5 6 7
Action repeats

0

25

50

75

100

Fr
eq

ue
nc

y

Ant (4, 6.72, 7)

5 6 7
Action repeats

0

30

60

90

120

Fr
eq

ue
nc

y

Half Cheetah (5, 6.94, 7)

20 40
Action repeats

0

3

6

9

Fr
eq

ue
nc

y

Hopper (13, 28.83, 58)

22 25 27 30
Action repeats

0

4

8

12

16

Fr
eq

ue
nc

y

Walker (22, 28.66, 30)

Figure 4: Histogram of action duration in terms of primitive action repeats from the one episode at the
end of training for Ant, Half Cheetah, Hopper and Walker. In contrast to using a fixed frame-skip, using
temporally-extended actions allows the agent to take actions of varying durations. Numbers in the title
indicate the min, average and max of action repeats taken.

6 Conclusion and Future Work

Using the standard framework of planning with primitive actions provides more granular control but can be
computationally expensive. When δenv

t is small, an agent requires a large planning horizon which increases
the search space as well as the number of variables it needs to optimize. We propose to use temporally-
extended actions where the planner treats the action duration as an additional optimization variable. This
decreases the complexity of the search by restricting the search space and reducing the planning horizon, which
in turn results in a smaller number of variables for the planner to optimize. We further show that, with a
suitable δtmax, learning temporally-extended dynamics models using MBRL can be faster while outperforming
the standard framework in many environments. Rather than setting δtmax as a hyperparameter, a MAB
framework can be used to dynamically select it. This is slower to converge but provides the same performance
benefits as a suitably chosen δtmax. Our proposed approach does have several potential limitations. First,
using temporally-extended actions does not guarantee improvement in every situation since the generated
trajectories are not as flexible as those due to primitive actions. Second, the proposed MAB formulation
requires fixed DTE for every bandit arm. Dynamic selection of both δtmax and DTE together is left as future
work.

Acknowledgements

This work was partly supported by NSF under grant 2246261. Some of the experiments in this paper were
run on the Big Red computing system at Indiana University, supported in part by Lilly Endowment, Inc.,
through its support for the Indiana University Pervasive Technology Institute.

10

References
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation

platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, jun 2013.

Marc Bellemare, Joel Veness, and Michael Bowling. Investigating contingency awareness using atari 2600
games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pages 864–871, 2012.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with non-stationary
rewards. Advances in neural information processing systems, 27, 2014.

André Biedenkapp, Raghu Rajan, Frank Hutter, and Marius Lindauer. Temporl: Learning when to act. In
International Conference on Machine Learning, pages 914–924. PMLR, 2021.

Zdravko I Botev, Dirk P Kroese, Reuven Y Rubinstein, and Pierre L’Ecuyer. The cross-entropy method for
optimization. In Handbook of statistics, volume 31, pages 35–59. Elsevier, 2013.

Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is a powerful parameter
for learning to play atari. In Workshops at the twenty-ninth AAAI conference on artificial intelligence,
2015.

Palash Chatterjee, Ashutosh Chapagain, Weizhe Chen, and Roni Khardon. Disprod: differentiable symbolic
propagation of distributions for planning. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, pages 5324–5332, 2023.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

Ishan P Durugkar, Clemens Rosenbaum, Stefan Dernbach, and Sridhar Mahadevan. Deep reinforcement
learning with macro-actions. arXiv preprint arXiv:1606.04615, 2016.

Lev Finkelstein and Shaul Markovitch. A selective macro-learning algorithm and its application to the nxn
sliding-tile puzzle. Journal of Artificial Intelligence Research, 8:223–263, 1998.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L Dean, and Craig Boutilier. Hierarchical
solution of markov decision processes using macro-actions. arXiv preprint arXiv:1301.7381, 2013.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based policy
optimization. In Advances in Neural Information Processing Systems, 2019.

Marin Kobilarov. Cross-entropy motion planning. The International Journal of Robotics Research, 31(7):
855–871, 2012.

Ariel Kwiatkowski, Mark Towers, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A standard interface for
reinforcement learning environments. 2024. URL https://arxiv.org/abs/2407.17032.

Aravind Lakshminarayanan, Sahil Sharma, and Balaraman Ravindran. Dynamic action repetition for deep
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

11

https://arxiv.org/abs/2407.17032

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18(185):
1–52, 2018.

Shiyin Lu, Yu-Hang Zhou, Jing-Cheng Shi, Wenya Zhu, Qingtao Yu, Qing-Guo Chen, Qing Da, and Lijun
Zhang. Non-stationary continuum-armed bandits for online hyperparameter optimization. In Proceedings
of the fifteenth ACM international conference on web search and data mining, pages 618–627, 2022.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for option discovery in
reinforcement learning. In International Conference on Machine Learning, pages 2295–2304. PMLR, 2017a.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray Campbell.
Eigenoption discovery through the deep successor representation. arXiv preprint arXiv:1710.11089, 2017b.

Mausam and Daniel S. Weld. Planning with durative actions in stochastic domains. Journal of Artificial
Intelligence Research, 31:33–82, 2008.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Tianwei Ni and Eric Jang. Continuous control on time. In ICLR 2022 Workshop on Generalizable Policy
Learning in Physical World, 2022. URL https://openreview.net/forum?id=BtbG3NT4y-c.

Rahul Ramesh, Manan Tomar, and Balaraman Ravindran. Successor options: An option discovery framework
for reinforcement learning. arXiv preprint arXiv:1905.05731, 2019.

Sahil Sharma, Aravind Srinivas, and Balaraman Ravindran. Learning to repeat: Fine grained action repetition
for deep reinforcement learning. arXiv preprint arXiv:1702.06054, 2017.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke, Daniel Fišer, Michael Gimelfarb, Florian Pommerening,
Scott Sanner, Enrico Scala, Dominik Schreiber, et al. The 2023 international planning competition, 2024.

Cem Tekin and Mingyan Liu. Online learning of rested and restless bandits. IEEE Transactions on Information
Theory, 58(8):5588–5611, 2012.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE, 2012.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom Erez,
Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.org/10.1016/j.simpa.2020.100022. URL
https://www.sciencedirect.com/science/article/pii/S2665963820300099.

Dong Wang and Giovanni Beltrame. Deployable reinforcement learning with variable control rate. arXiv
preprint arXiv:2401.09286, 2024.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi Zhang,
Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforcement learning. arXiv
preprint arXiv:1907.02057, 2019.

Peter Whittle. Restless bandits: Activity allocation in a changing world. Journal of applied probability, 25
(A):287–298, 1988.

Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral control: From
theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):344–357, 2017.

12

https://openreview.net/forum?id=BtbG3NT4y-c
https://www.sciencedirect.com/science/article/pii/S2665963820300099

Supplementary Material

Table of Contents

A Iterative Primitive Dynamics Function 14

B Connection to Ni and Jang [2022] 14

C Environment Overview 14

C.1 MuJoCo environments . 15

D Experimental Details 15

E Computational Resources 17

F Additional Planning Experiments 17

F.1 Experiments with IPC Mountain Car . 17

F.2 Experiments with U-shaped Maps in Dubins Car . 17

G Additional MBRL results 20

H Ablations 20

H.1 Single model vs. Separate models . 20

13

A Iterative Primitive Dynamics Function

In most cases we have access to the primitive dynamics function (f). A trivial way of making f work with
temporally-extended actions is to wrap it in a loop. For the computation to be exact, f should be explicitly
dependent on time. If it is implicit, performing the computation at line 5 of Algorithm A1 will not be possible
and the algorithm computes the number of action-repeats instead.

Algorithm A1 FIP : Iterative primitive dynamics function

Require: primitive dynamics function (f), current state (sk),
temporally-extended action (ak), duration of action (δtk)

1: repeats = ⌊δtk/δenv
t ⌋

2: for i = 1 to repeats do
3: sk = f(sk, ak, δ

env
t) ▷ Control n

4: end for
5: sk+1 = f(sk, ak, δtk mod δenv

t) ▷ Control δt
6: return sk+1

The reward is simply aggregated in the loop and is not shown explicitly here. Note that for a given environment,
f is fixed, while sk, ak and δtk are dependent on the timestep.

B Connection to Ni and Jang [2022]

Ni and Jang [2022] propose to learn a policy that outputs the action variables as well as the time scale.
They have a similar looking objective. In this section, we compare our objective to theirs. First, we repeat
Equation (1) which computes the returns of a trajectory τ using the proposed framework:

J(τ) =

L(τ)∑
k=1

γe<k

ek∑
t=1

γt−1R(e<k+t)

A similar objective is used by Ni and Jang [2022]. However, it is important to note that they control the
timescale while we keep the timescale fixed and control the action duration. Let δk ∈ [δmin, δmax] be the
timescale associated with the action at decision point k. For simplicity, they assume that the timescale is in
integers (in physical unit of seconds), which means that δk is also the number of execution steps associated
with the action. Using this, their objective reduces to

J(τ) =

L(τ)∑
k=1

γe<kR(se<k+1, ak)δk (4)

where R(se<k+1, ak)δk is a linear approximation of the reward function. So, the objective used by Ni
and Jang [2022] can be viewed as an approximation of Equation (1) where the reward function due to a
temporally-extended action has been replaced by a linear approximation.

C Environment Overview

In this section, we provide an overview of the environments used in our experiments. Table A1 lists the
dimensionality of the observation and the action space of the environments, the reward functions along with
the episode length (which is equivalent to the maximum number of primitive steps allowed).

Details for Dubins Car environment : We use the Dubins Car environment of Chatterjee et al. [2023].
The state space comprises of the x and y co-ordinates, and the orientation (θ) of the car, along with the

14

Domain nS nA Episode steps Reward Function

Dubins Car 5 2 300 100 × 1distance from goal<0.5 − 10 × 1collision = True
Cartpole 4 1 200 1x,θ within bounds
Cartpole (Dense) 4 1 200 cos(θt) − 0.001x2

t

Mountain Car 2 1 200 1xt=goal × 100 − 0.1a2
t

IPC Mountain Car 2 1 500 1xt=goal × 100 − 0.1a2
t

Reacher 17 7 150 −dist(finger, obj) − a2
t

Pusher 23 7 150 −0.5 × dist(finger, obj) − dist(object, goal) − 0.1a2
t

Ant 27 8 1000 sigmoid(ẋt) if ẋt ≤ 0.5 else 1
Half Cheetah 18 6 1000 sigmoid(ẋt) if ẋt ≤ 10 else 1
Hopper 11 3 1000 (sigmoid(ẋt) if ẋt ≤ 2 else 1) × healthy reward
Walker 17 6 1000 1/2((sigmoid(ẋt) if ẋt ≤ 1 else 1) + healthy reward)

Table A1: State and action space, maximum episode lengths and reward functions for different environments.

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(a) (b)

Figure A1: (a) An example of ATE solving the cave-mini map (γ1 = 0.99, γ2 = 1.0, δtmax = 20). (b) An
instance of the IPC Multi-hill Mountain Car.

current linear (v) and angular velocity (ω) of the car and the action space is the change in linear velocity (∆v)
and angular velocity (∆ω). An episode terminates if the agent reaches the goal or if it takes 300 primitive
steps.

C.1 MuJoCo environments

Controlling δenv
t : Each environment defined in MuJoCo has its own value of δt which is defined in the

corresponding XML file along with the integrator to be used. Further, each environment has a predefined
frame-skip which is defined in the constructor of the corresponding class. The combination of these two
control δenv

t in MuJoCo. In order to operate at the base δt, we simply set the frame-skip value to 1.

Reward functions : The default reward functions in MuJoCo are not bounded. For the MAB framework,
we require a bounded reward function. The problem is amplifed in Ant, Half Cheetah, Hopper and Walker,
where the rewards over an episode can be very large. So, for these environments, we adapt the bounded
reward functions from DeepMind Control Suite [Tunyasuvunakool et al., 2020], so that the agents always get
a reward between 0 and 1, with the specifics depending on the environment.

Maximum episode lengths : MuJoCo environments have a predefined value of frame-skip. The default
episode length is with respect to this frame-skip. For example, Half Cheetah has a frame-skip of 5 and a
episode length of 1000. An equivalent episode in Half Cheetah with a frame-skip of 1 should be of length
5000. However, we limit the episode to 1000 as otherwise ASTD would have taken too long to train. Even
with episode lengths of 1000, ASTD requires more than 40 hours to train (Table A3).

D Experimental Details

Our framework has two main hyperparameters - range of action duration, which is specified by δtmin and
δtmax, and planning horizon. Rather than controlling both these values, δtmin is always set to δenv

t , and
modifying δtmax controls the range. For the environments Cartpole and Mountain Car, we use values of

15

planning horizon from prior work for the standard framework, and adjust the depth for ATE by exploring
related values. We cannot do this for MuJoCo-based environments since we set the frameskip parameter to 1.
Rather we perform a search over some potential values for the planning horizon for the standard framework
and δtmax and planning horizon for our framework and choose the configuration with the best performance.
The other hyperparameters related to online training have been borrowed from Chua et al. [2018].

Domain Range of action duration Planning horizon Learning Rate

Standard Ours Standard Ours

Dubins Car [u-shaped map] 0.2 [0.2-20] 1000 75 -
Dubins Car [cave-mini map] 0.2 [0.2-2] 120 50 -
Cartpole 1 [1-10] 30 3 1e-3
Mountain Car 1 [1-100] 100 10 -
IPC Mountain Car 1 [1-125] 175 12 -
Reacher 0.01 [0.01, 0.2] 25 5 1e-3
Pusher 0.01 [0.01, 0.2] 25 5 1e-3
Half Cheetah 0.01 [0.01, 0.07] 90 15 1e-3
Ant 0.01 [0.01, 0.07] 70 15 3e-4
Hopper 0.002 [0.002, 0.125] 50 15 3e-4
Walker 0.002 [0.002, 0.0625] 70 15 3e-4

Table A2: Hyper-parameters for different environments. Range of action duration is for the fixed variant of
the algorithm.

Details for Dubins Car environment : The default timescale for the environment is 0.2 while δtmax for
our formulation is 20. Setting δtmax to such a large value allows us to have the same value across maps and
just allow more time for optimization. The planning horizon needs to be tuned for different maps. Table A2
contains the planning horizon for the maps used in the experiments. Note that for our experiment with the
cave-mini map, we reduce δtmax to prevent the agent from completing the map in a few decision steps.

Implementation details for the planner : We use a framework that is similar to PETS [Chua et al.,
2018], which uses CEM as a planner. PETS introduces Trajectory Sampling (TS) which creates P particles
from the current state, and then each particle is propagated using a particular member of the ensemble. TS1
uniformly resamples a bootstrap per time step, while TS∞ samples a bootstrap before an episode and uses
that for the entire duration of the episode. For our experiments, we learn an ensemble of 5 feedforward
networks and we use the TS∞ variant with P = 20 for planning.

Algorithm A2 Planning using CEM with ensemble of dynamics model.
1: for time t = 0 to H do
2: sample n action sequences {ait, ait+1, . . . , a

i
t+D}

3: for each sampled action sequence do
4: obtain state sequence by propagating particles using sit+1 = f̃(sit, a

i
t)

5: evaluate the action sequence using
∑D

t=1

∑P
p=1

r(spt ,a
p
t)/P

6: choose the top k action sequences to update CEM(·) distribution.
7: end for
8: Execute first action a from optimal action sequence.
9: end for

Model learning : For MBRL, we use the same model architecture as Chua et al. [2018]. We learn an
ensemble of 5 models, where each model is a fully connected neural network. For Ant, Half Cheetah and
Hopper, the model has 4 hidden layers while for all other environments, it has 3 hidden layers. Each hidden
layer has 200 neurons. The learning rates for each environment are given in Table A2.

16

E Computational Resources

Each MBRL experiment was performed on a single node with a single GPU (using a mix of V100 and A100),
single CPU (AMD EPYC 7742) and 64GB of RAM. The time required for training for different algorithms
are in Table A3. We note that although the experiments were done on two different kinds of GPUs, the
running times for both of them are comparable.

Env Standard Ours (F) Ours (D)

Cartpole 0.65 0.4 0.5
Half Cheetah 45 5 5.5
Ant 41 4 7
Hopper 40 4 6.5
Reacher 2.6 1.6 1.5
Pusher 2.6 2 1.5
Walker 36.8 3.1 5.8

Table A3: Approximate time (in hours) required to finish training for each environment.

In Reacher and Pusher, the rollout length is mostly same for the standard algorithm and our proposed
algorithm, but the planning horizon for the standard algorithm is 25 while for our proposed algorithm is 15,
resulting in shorter training times.

In Ant, Half Cheetah, Hopper and Walker, ATE is significantly faster than ASTD. The dynamic variant of our
proposed algorithm takes slightly longer than the fixed variant as the rollout length of the dynamic variant is
longer on average than the rollout length of the fixed variant.

F Additional Planning Experiments

F.1 Experiments with IPC Mountain Car

How does the performance change if the increase the planning horizon? We vary the planning
horizon of the agents and compare the performances across instances in Table A4. For the easier problems, a
small planning horizon is sufficient, but for the difficult instances, a deeper search is required. The performance
of the planner remains relatively stable as the planning horizon increases.

F.2 Experiments with U-shaped Maps in Dubins Car

We experiment with varying depths using u-shaped maps in the Dubins Car environment. The problem is
not trivial as the car faces the obstacle and it needs to first turn around and then find a path the goal, which
gives the agent a reward of 100. Every collision with an obstacle gets a penalty of 10. An episode terminates
when the agent reaches the goal or when the agent takes 300 primitive steps.

To be successful in this setting, we observe that ASTD requires a planning horizon of 1000 and ATE requires
a planning horizon of 75. Both the agents use 10,000 samples and 50 optimization steps for each decision.
ATE succeeds but not in all runs. We look at the failure cases for ATE and have an interesting observation.
For planning horizon of 75 and 100, the failure is due to the fact that the agent runs out of primitive actions,
while for planning horizon 50, the failing scenario corresponds to the agent not being able to find a path out
of the obstacles region. This means that if we allow the episodes to run for longer, the former failure can be
mitigated but the latter cannot. The detailed results are in Table A5 and the failure cases for ATE are shown
in Figure A2.

Next, we make the problem difficult by augmenting the action space with 100 dummy action variables. As
the agents are unaware that these variables don’t contribute to the reward or the dynamics, they still need to
search over these variables. We setup the experiment similar to the previous one by keeping the number of
samples to 10000 and varying the planning horizon. For ASTD, almost all the runs fail - either because it

17

D Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

ASTD

60 37.49 ± 51.36 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
80 74.54 ± 41.7 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
100 91.93 ± 0.41 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
125 90.92 ± 0.22 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
150 91.07 ± 0.18 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
175 91.12 ± 0.3 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
200 91.11 ± 0.27 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
225 91.2 ± 0.32 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
250 91.01 ± 0.12 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
275 90.98 ± 0.11 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
300 90.91 ± 0.1 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0

ATE

2 -0.01 ± 0.01 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
5 73.52 ± 43.45 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
8 92.58 ± 1.01 90.99 ± 0.7 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0
10 71.43 ± 46.05 89.79 ± 1.28 87.27 ± 1.86 68.11 ± 42.49 85.02 ± 0.26
12 92.41 ± 1.82 90.11 ± 1.19 87.44 ± 1.52 86.91 ± 1.53 85.45 ± 0.25
15 92.33 ± 2.0 90.52 ± 0.6 87.91 ± 0.8 87.51 ± 0.98 85.19 ± 1.15
20 92.52 ± 1.46 90.12 ± 1.36 87.74 ± 1.99 87.08 ± 2.57 86.43 ± 0.31
25 92.39 ± 1.85 90.54 ± 1.06 88.39 ± 1.36 87.71 ± 1.61 87.06 ± 0.46
30 72.07 ± 45.41 91.08 ± 0.37 88.94 ± 0.49 68.0 ± 45.24 86.08 ± 1.81
35 51.48 ± 57.79 90.91 ± 1.15 89.28 ± 0.2 89.06 ± 0.81 67.07 ± 45.5
40 71.21 ± 48.64 90.12 ± 1.42 89.75 ± 2.19 87.38 ± 2.38 67.86 ± 45.2

Table A4: Performance of ASTD and ATE in various instances of IPC Multi-hill Mountain Car as the planning
horizon is increased.

D Rewards ↑ Decision Steps ↓ Decision time ↓ Time for an episode ↓ P(success) ↑

ASTD

250 -9.95 ± 0.0 300.0 ± 0.0 0.13 ± 0.0 413.46 ± 4.16 0
500 -9.95 ± 0.0 300.0 ± 0.0 0.29 ± 0.0 806.97 ± 8.82 0
750 32.04 ± 62.17 213.8 ± 118.03 0.42 ± 0.02 851.53 ± 466.61 0.4
1000 100.0 ± 0.0 90.8 ± 20.17 0.56 ± 0.02 480.38 ± 102.06 1

ATE

25 -497.53 ± 137.16 4.0 ± 0.0 2.31 ± 0.09 14.1 ± 0.43 0
50 16.32 ± 187.12 4.2 ± 0.45 3.66 ± 0.1 20.03 ± 1.59 0.8
75 80.0 ± 44.72 4.4 ± 1.14 5.08 ± 0.24 27.39 ± 5.84 0.8
100 80.0 ± 44.72 4.4 ± 1.14 6.57 ± 0.21 34.56 ± 7.79 0.8

Table A5: Performance of ASTD and ATE on the u-shaped map in Dubins Car as the planning horizon is
varied. Both agents use 10,000 samples and 50 optimization steps.

does not find a path around the obstacle, or crashes due to huge memory requirements. In order to reduce
the memory requirements, we perform a second experiment, fixing the planning horizon to 1000 and varying
the number of samples. Reducing the number of samples fixes the issue of memory requirements, but does
not help the agent identify a path. In contrast, the performance of ATE is mostly unaffected by this addition
of dummy action variables. The detailed results are in Table A6. ATE uses the same configuration as the
earlier experiment and achieves similar performance. As observed earlier, the failure case of ATE for planning
horizon of 50 is due to the fact that it cannot find a path around the obstacles, while the failure case for
planning horizon of 100 is because it runs out of primitive steps.

18

D #samples Rewards ↑ Decision Steps ↓ Decision time ↓ Time for an episode ↓ P(success) ↑

ASTD

250

10000

-9.95 ± 0.0 300.0 ± 0.0 0.66 ± 0.0 580.85 ± 2.91 0
500 12.04 ± 49.17 255.2 ± 100.18 1.38 ± 0.01 970.11 ± 378.22 0.2
750 - - - - 0
1000 - - - - 0

ASTD 1000
100 -919.43 ± 238.36 300.0 ± 0.0 0.46 ± 0.03 1567.29 ± 25.31 0
1000 -15.92 ± 8.9 300.0 ± 0.0 0.73 ± 0.0 1663.75 ± 8.56 0
10000 - - - - 0

ATE

25

10000

-479.62 ± 145.46 4.0 ± 0.0 2.31 ± 0.09 14.05 ± 0.25 0
50 18.31 ± 182.67 3.6 ± 0.55 4.0 ± 0.12 18.72 ± 2.41 0.8
75 100.0 ± 0.0 4.6 ± 0.89 5.36 ± 0.16 30.01 ± 4.56 1.0
100 80.0 ± 44.72 4.4 ± 0.89 6.87 ± 0.12 35.74 ± 6.44 0.8

Table A6: Performance of ASTD and ATE on the u-shaped map in Dubins Car when the action space is
augmented with 100 dummy actions. Both agents use 50 optimization steps. Missing values indicate that the
particular configuration was not feasible due to large memory requirements.

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(a) DTE = 50, |A| = 2

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(b) DTE = 75, |A| = 2

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(c) DTE = 100, |A| = 2

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(d) DTE = 50, |A| = 102

0 2 4 6 8 10
0

2

4

6

8

10

0.10

0.25

0.50

0.75

0.90

1.00

(e) DTE = 100, |A| = 102

Figure A2: Failure cases for ATE in the u-shaped map. When |A| = 2, for DTE = 75 and DTE = 100, the
agent identifies a path around the obstacles but runs out of the maximum number of primitive steps. On
increasing the action space, a similar failure occurs for DTE = 100. The failures due to DTE = 50 happen
because the agent does not find a path around the obstacles.

19

G Additional MBRL results

How do the action repeats due to ATE vary across training iterations?

50 100 150 200
Training iterations

0

1

2

lo
g

10
(a

ct
io

n
 r

ep
ea

ts
)

Cartpole

50 100 150 200
Training iterations

0

1

2

lo
g

10
(a

ct
io

n
 r

ep
ea

ts
)

Cartpole (Dense)

100 200 300 400 500
Training iterations

0

1

2

lo
g

10
(a

ct
io

n
 r

ep
ea

ts
)

Half Cheetah

100 200 300 400 500
Training iterations

0

1

2

lo
g

10
(a

ct
io

n
 r

ep
ea

ts
)

Ant

100 200 300 400 500 600
Training iterations

0

1

2

lo
g

10
(a

ct
io

n
 r

ep
ea

ts
)

Hopper

100 200 300 400
Training iterations

0

1

lo
g

10
(a

ct
io

n
 r

ep
ea

ts
)

Pusher

100 200 300 400
Training iterations

0

1

lo
g

10
(a

ct
io

n
 r

ep
ea

ts
)

Reacher

100 200 300 400 500
Training iterations

0

1

2

lo
g

10
(a

ct
io

n
 r

ep
ea

ts
)

Walker

Ours(D) Ours(F) Standard

Figure A3: Mean and standard deviation of the running averages (window size=10) of log of action repeats.
Values due to ATE(D) converge in the neighborhood of values due to ATE(F)

.

While the histogram in Figure 4 gives us a good sense of the distribution of discretized action duration
(δt/δenv

t) chosen by ATE in one episode after the training has been completed, it does not capture the trend
across time. As the average action repeat for ATE(D) can have a large range, in Figure A3 , we plot the
log of average action repeat instead. ASTD has an action repeat of 1 as it works with primitive actions. For
ATE(F), the average action repeat is mostly stable. In Cartpole, Reacher and Pusher, the agent has larger
action repeats (or takes large values of δt) in the beginning before realizing that smaller action repeats work
better. The more interesting plots are that of ATE(D) as it has to figure out the correct range of δt. From
the plots, we see that the average action repeats decreases gradually before stabilizing around the average
action repeat used by ATE(F). Note that larger values of average action repeats does not necessarily mean
smaller number of decision points. ATE(D) has to choose δtmax candidates from a list of exponentially spaced
candidates and a large δtmax selection can easily skew the average action repeat.

H Ablations

H.1 Single model vs. Separate models

In non-stationary bandits, the reward distribution of the arms changes with time. If the reward distribution
of an arm changes only when it is pulled, it is called a rested bandit, while if the reward distribution of
an arm changes irrespective of whether that particular arm was pulled or not, it is called a restless bandit
[Whittle, 1988, Tekin and Liu, 2012].

In the MBRL setup, the performance of the agent depends on the quality of the learned dynamics model.
If we learn a single dynamics model to be shared across all arms, then the underlying reward distribution
for an arm can keep on changing even if the arm is never pulled. This is the setting of a restless bandit.
On the other hand, learning a separate dynamics model for each arm results in a rested bandit setting as it
ensures that the underlying reward distribution for an arm only changes when that arm is pulled and the
corresponding dynamics gets updated.

20

Hence, choosing whether to use a single dynamics model which is shared between all the bandit arms or using
a separate dynamics model for each bandit is an important consideration. Both the modeling choices have
their advantages and disadvantages.

While using a single dynamics makes the most use of the available data, there is a data imbalance issue.
Larger values of δt will result in fewer experiences being captured. Even if we uniformly sample the arms,
we will have fewer examples due to candidates with large values of δtmax than we will have for candidates
with small values of δtmax. As all of the data is used to train a single model, the model is likely to overfit on
examples from candidates with small values of δtmax. On the other hand, using separate dynamics model for
each bandit makes the model more focused, but we do not make full use of the available data.

As shown in Figure A4, we find that using the UCB heuristic, the agent performs better if it learns a separate
dynamics model for each bandit.

100 200 300 400 500
Training iterations

400

600

800

Sc
or

e

Ant

100 200 300 400 500
Training iterations

0

250

500

Sc
or

e

Half Cheetah

Single Separate

Figure A4: While learning a single dynamics model to be shared across all δtmax candidates is sufficient for
Half Cheetah, we need to learn separate dynamics models for each δtmax candidate in Ant.

21

	Introduction
	Related Work
	Modeling Temporally-Extended Actions
	Method
	Experiments
	Conclusion and Future Work
	Iterative Primitive Dynamics Function
	Connection to ni2022continuous
	Environment Overview
	MuJoCo environments

	Experimental Details
	Computational Resources
	Additional Planning Experiments
	Experiments with IPC Mountain Car
	Experiments with U-shaped Maps in Dubins Car

	Additional MBRL results
	Ablations
	Single model vs. Separate models

