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I. Summary

Motivation Planning in continuous/hybrid
stochastic environments is challenging. Exist-
ing solutions use rollouts or make assumptions
about the dynamics. Rollouts using the same
{at} can result in very different {st+1} and lead
to high variance estimates.

Contribution Construct a symbolic com-
putation graph that captures the distribu-
tion over future trajectories allowing us to
optimize the policy by performing gradient
search over the graph. Use this in a robust
search algorithm to choose the best action.

III. Algorithm
Online Planner At every timestep, optimize
over a finite time horizon, but choose the first
action from the solution.

Algorithm 1 One Step of DiSProD.

Input: state

1: initialize actions (for all restarts)
2: build computation graph till depth D
3: while actions have not converged do

4: loss = -
∑

restart k Q̂(st, µ̂k
a, v̂

k
a)

5: loss.backward()

6: actions ← safe-projected-gradient-update (actions)

7: save action-means µ̂k∗

at+1:t+D
from the best restart k∗

8: return action ∼ N (µ̂k∗

at
, v̂k

∗

at
)
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Initialization

µ̂a,` ∼ U(a`,min, a`,max)

v̂a,` = min(a`,max−µ̂a,`,µ̂a,`−a`,min)
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Can use saved values from previous timestep.

Convergence Criterion Loose crite-
rion meant to guide the search direction.
Stop after 10 gradient updates or when
|µ̂a,t − µ̂a,t−1| ∧ |v̂a,t − v̂a,t−1| < 0.1.

Safe Projected Gradient Descent Project
the updated µ̂a and v̂a into legal regions, and
update only if Q-value improves.

Best Restart Each random restart yields a
computation graph approximating the Q-value.
Run multiple such restarts in parallel. Best
restart (k∗) = Restart with highest Q-value af-
ter convergence.

Action Selection Sample an action from the
first action distribution (µ̂k∗

at
, v̂k

∗

at
).

Saving Actions Save (µ̂k∗

at+1:t+D
) to initialize

one restart in the subsequent timestep.

II. Method
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1. Given a transition function (a), first
externalize the sampling of noise vari-
ables (b).

2. Use Taylor’s expansion for (b) to gen-
erate (c). Till this point, all inputs
and outputs are concrete variables.

3. They key idea is to combine (c) with
propagation of distributions to yield
(d) where the inputs and outputs are
distributions over variables.

4. To obtain a computation graph, stack
multiple such modules till desired
depth (e).
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j (zt − ẑt) + 1
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• Propagate distributions over states by computing the expectation and variance for each state
variable, under an independence assumption.

• Optimize probabilistic policies by optimizing the expectation and variance for each action variable.

IV. Experiments
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DiSProD is more robust to increasing noise in
environments than CEM/MPPI. (Env: Pen-
dulum)
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When rewards are sparse, DiSProD per-
forms optimally by searching deep, while
CEM/MPPI fail. (Env: Modified Mountain
Car)
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CEM requires 100x samples to achieve decent
performance when action space increases,
while DiSProD performs optimally without
any extra resources. (Env: Modified Moun-
tain Car)

DiSProD controls Jackal successfully despite
the transition model ignoring physical prop-
erties (like friction, weight of car) and need-
ing to deal with asynchronous execution of
actions.
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Ve
lo
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ty Using the variance terms is crucial to get a

good approximation of the empirical trajec-
tory distribution.

More experiments with CartPole, MountainCar, Pendulum and some modified versions of these (in
Gym), Dubins’ car model (in Gym and ROS) and two physical robots are in the paper.


